ESM 186 Environmental Remote Sensing and ESM 186 Lab Syllabus Winter 2012

Instructor: Susan Ustin (<u>slustin@ucdavis.edu</u>) Phone: 752-0621 Office: 233 Veihmeyer Hall and 115A, the Barn Office Hours: Tuesday and Thursday 11:30 – 1:00 and by appointment.

TA: Paul Haverkamp, Office Hours: Sean Hogan, Office Hours:120 Veihmeyer HallPhone (both): 752-5092

Classroom: 1137 PES The door code for 1137 PES Lecture: Tuesday, Thursday 10:00-11:20 am Lab: Tuesday, Thursday 3:10-6:00 pm (open lab for breaks) Smart Site listserv: ers186@smartsite.ucdavis.edu

THIS COURSE IS 5 CREDIT UNITS

3 units credit for the lecture course.

A 2 unit lab credit is 6 hrs per week. You can come in independently if you need more time to complete the lab assignments in your unscheduled time but we expect everyone can finish within the scheduled class time.

Grading: Graded homework Sets (4) 20%, Midterms (2) 25% each, Comprehensive Final 30%.

Text: Jensen, John R. 2007. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd Ed. Upper Saddle River, N.J., Prentice Hall.

You are responsible for assigned reading material, even if it is not covered in class. **Exams cover concepts and lectures delivered in lab AND reading assignments.**

The first section of the course describes principles of spectroscopy related to plants, soil, mineralogy and water

Lecture #	Date	Primary Topic(s)	Reading Assignment
Lecture 1	January 10	Introduction Wavelength, frequency, energy Reflectance, Transmission, Absor Survey of environmental digital re Plant functions (photosynthesis, re *Lab: introduction to image proce	Chapter 1, 2 ption emote sensing espiration, transpiration)
Lecture 2	January 12	<i>In situ</i> (field/lab) reflectance meas How/what to measure; endmember Measurement protocols; instrume Platforms: portable, vehicle moun unpiloted airborne vehicles *Lab: Introduction to field spectro	surements; Chapter 15 ers, calibration targets nt characteristics ited, trams, ultralight and ometers and GPS
Lecture 3	January 17	Spectroscopy of Leaves and Plant Optical Properties of leaves and c Index of Refraction Specular and diffuse reflectance Target and path radiance Bidirectional Reflectance Distribu	s Chapter 11, 2 anopies
Lecture 4	January 19	Spectroscopy of Canopies Leaf area index, leaf angle distrib Landscape components, structure Digital Multispectral (MSS, Land Orbital configurations *Georegistration and Mosaicking	Chapter 11, 2, 7 ution sat, SPOT)
Lecture 5	January 24	Spectroscopy of Water Spectral properties of phases of w Specular, Lambertian (diffuse) ret	Chapter 12, 9 rater (vapor, liquid, solid) flectance
Lecture 6	January 26	Spectroscopy of Minerals Mineralogy, Optical and Thermal Kinetic heat, temperature Temperature relationships: Stefan-Boltzmann Law, Emittance Law	Chapter 14, 2, 8 signatures e, Wien's Law, Kirchoff's
1 st Midterm	January 31	*Lab: Data Reduction: Spectral Ir	ndexes

Lecture 8	February 2	Spectroscopy of soils	Chapter 14, 2, 7
		Soil moisture, mineralogy	
		Organic matter, soil quality and fertility	
		Texture, roughness	
		*Lab: Data Reduction: Principal	Components

The second section of the course provides examples of major types of environmental remote sensing applications

Lecture 9	February 7	Land Cover Classification & Mapping Chapter 11, 7 Spatial patterns and scales (Local: plant, patch, stand) Fragmentation, corridors, and spatial landscape features Regional land cover, cover type, Global systematic land cover mapping missions: Global: growth form mapping; AVHRR, MODIS global mapping *Lab = supervised/unsupervised classification
Lecture 10	February 9	Geomorphology Chapter 14, 9 Land forms, topography Faults, geologic features Earthquake monitoring, volcanic eruptions Tsunamis
Lecture 11	February 14	Hydrology and water systems Chapter 12, 7, 8, 9 Rivers, lakes, and ocean color Water color, turbidity, sea surface temperature, Precipitation, ice, snow Ocean satellites: SeaWIFS Surface hydrology, drainage Evapotranspiration
Lecture 12	February 16	Change detection: Seasonal, annual, interannual Landscape components, Mixture analysis Phenological patterns; intra-annual to Century-scale patterns Invasive species/species mapping Multitemporal data (MODIS, Landsat, SPOT) Bidirectional Reflectance Distribution Function (BRDF)
Lecture 13	February 21	Weather monitoring Chapter 12, handout GOES, POES Geostationary orbits Scattering and absorption in atmosphere Aerosols and clouds *lab = change detection; Change Detection Handout

Lecture 14	February 23	Weather Monitoring Chapter 12, handout Severe storms, Weather disaster prediction Radiation and energy budget Thermal sensors Stefan-Boltzmann Law, Emittance, Wien's Law, Kirchoff's Law
Lecture 15	February 28	Climate Change Handout Greenhouse gases and energy budget Biogeochemical cycles (carbon, water, nitrogen + others) *Map Composition Lab
Lecture 16	March 1	Take Home Midterm (2 nd Midterm) ReleasedUrbanChapter 13, 10Heat islandsImpervious surfaces and hydrologyHigh spatial resolution satellites
		Landscape mixtures subpixel mixing pan sharpening
Lecture 17	March 6	Midterm due before start of class Disaster Response and Monitoring Chapter 8, 11 Wildfire detection and mapping; risk assessment Fire extent mapping, fire temperature (and emissions), Volcanic eruptions Temperature Measurements *Lab Wildfire Exercise
Lecture 18	March 8	LiDAR Principles Chapter 10 *Lab: Spectral mixing analysis
Lecture 19	March 13	Radar principles Chapter 9 Radar satellites Radar interferometry SRTM *Lab = LiDAR
Lecture 20	March 15	Comparison of lidar, radar, and optical methods Complete any unfinished topics Review

In addition to the text, several web based Information Resources: <u>http://rst.gsfc.nasa.gov/</u> http://ccrs.nrcan.gc.ca/index e.php

http://www.gisdevelopment.net/tutorials/tuman008.htm http://www.profc.udec.cl/~gabriel/tutoriales/rsnote/contents.htm

http://noaasis.noaa.gov/NOAASIS/ml/education.html

http://www.geog.ubc.ca/vgd/remote.sensing/tutorials/tutorials.html